Iterated Loop Algebras
نویسنده
چکیده
Iterated loop algebras are by definition obtained by repeatedly applying the loop construction, familiar from the theory of affine Kac-Moody Lie algebras, to a given base algebra. Our interest in this iterated construction is motivated by its use in the realization of extended affine Lie algebras, but the construction also appears naturally in the study of other classes of algebras. This paper consists of a detailed study of the basic properties of iterated loop algebras.
منابع مشابه
Derived Algebraic Geometry VI: E[k]-Algebras
1 Foundations 5 1.1 The E[k]-Operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 The Additivity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Iterated Loop Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4 Coherence of the Little Cubes Operads . . . . . . ....
متن کاملCombinatoric N-fold Categories and N-fold Operads
Operads were originally defined as V-operads, that is, enriched in a symmetric or braided monoidal category V. The symmetry or braiding in V is required in order to describe the associativity axiom the operads must obey, as well as the associativity that must be a property of the action of an operad on any of its algebras. A sequence of categorical types that filter the category of monoidal cat...
متن کاملCombinatorial N-fold Monoidal Categories and N-fold Operads
Operads were originally defined as V-operads, that is, enriched in a symmetric or braided monoidal category V. The symmetry or braiding in V is required in order to describe the associativity axiom the operads must obey, as well as the associativity that must be a property of the action of an operad on any of its algebras. A sequence of categorical types that filter the category of monoidal cat...
متن کاملDouble Pieri Algebras and Iterated Pieri Algebras for the Classical Groups
We study iterated Pieri rules for representations of classical groups. That is, we consider tensor products of a general representation with multiple factors of representations corresponding to one-rowed Young diagrams (or in the case of the general linear group, also the duals of these). We define iterated Pieri algebras, whose structure encodes the irreducible decompositions of such tensor pr...
متن کاملKoszul Duality Complexes for the Cohomology of Iterated Loop Spaces of Spheres
— The goal of this article is to make explicit a structured complex computing the cohomology of a profinite completion of the n-fold loop space of a sphere of dimension d < n. Our construction involves: the free complete algebra in one variable associated to any fixed En-operad; an element in this free complete algebra determined by a morphism from the operad of L∞-algebras to an operadic suspe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005